Dendritic connectivity shapes spatial patterns of genetic diversity: a simulation-based study.
نویسندگان
چکیده
Landscape features notoriously affect spatial patterns of biodiversity. For instance, in dendritic ecological networks (such as river basins), dendritic connectivity has been proposed to create unique spatial patterns of biodiversity. Here, we compared genetic datasets simulated under a lattice-like, a dendritic and a circular landscape to test the influence of dendritic connectivity on neutral genetic diversity. The circular landscape had a level of connectivity similar to that of the dendritic landscape, so as to isolate the influence of dendricity on genetic diversity. We found that genetic diversity and differentiation varied strikingly among the three landscapes. For instance, the dendritic landscape generated higher total number of alleles and higher global Fst than the lattice-like landscape, and these indices also varied between the dendritic and the circular landscapes, suggesting an effect of dendricity. Furthermore, in the dendritic landscape, allelic richness was higher in highly connected demes (e.g. confluences in rivers) than in low-connected demes (e.g. upstream and downstream populations), which was not the case in the circular landscape, hence confirming the major role of dendricity. This led to bell-shaped distributions of allelic richness along an upstream-downstream gradient. Conversely, genetic differentiation (Fst ) was lower in highly than in low-connected demes (which was not observed in circular landscape), and significant patterns of isolation by distance (IBD) were also observed in the dendritic landscape. We conclude that in dendritic networks, the combined influence of dendricity and connectivity generates unique spatial patterns of neutral genetic diversity, which has implications for population geneticists and conservationists.
منابع مشابه
Dendritic connectivity controls biodiversity patterns in experimental metacommunities.
Biological communities often occur in spatially structured habitats where connectivity directly affects dispersal and metacommunity processes. Recent theoretical work suggests that dispersal constrained by the connectivity of specific habitat structures, such as dendrites like river networks, can explain observed features of biodiversity, but direct evidence is still lacking. We experimentally ...
متن کاملRiver network properties shape diversity and community similarity patterns of aquatic insect communities across major drainage basins
Aim Spatial dynamics and habitat connectivity affect community composition and diversity in many ecosystems. For many decades, diversity patterns in riverine ecosystems were thought to be related to local environmental conditions. Recent theoretical work, however, suggests that diversity in rivers is strongly affected by dispersal along the dendritic landscape structure and that environmental c...
متن کاملA Comparative Study into “Gere Geometric Designs” in Islamic Architecture and Principle of “Perceptual Creation” in the Mystical Thoughts of Ibn Arabi
This article is an analytic and comparative study into abstract patterns of geometric designs, as one of the most significant spaces in the Islamic architecture, and the principle of perceptual creation. It has a comparative approach to investigate equivalence, effigy, and analogies between the micro and macro systems (in the hierarchical system of the universe). In the mystical cosmology of Ib...
متن کاملFluvial network topology shapes communities of native and nonnative amphipods
Habitat connectivity crucially influences dispersal of organisms. It is especially seen as an important driver of the spatial structuring of biological communities in ecosystems that have intrinsic and general connectivity patterns, such as the universal dendritic structure of fluvial networks. These networks not only define dispersal of native species, but also represent corridors of biologica...
متن کاملاستفاده از تئوری مدارهای الکتریکی جهت شناسایی کریدورهای مهاجرتی بین پناهگاههای حیات وحش موته و قمشلو در استان اصفهان
Modeling of ecological connectivity across landscape is important for understanding a wide range of ecological processes. Modeling ecological connectivity between habitats and incorporating these models into conservation planning require quantifying the effect of spatial patterns of landscape on the degree of habitats connectivity. Recently, concepts from electrical circuit theory have been ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of evolutionary biology
دوره 28 4 شماره
صفحات -
تاریخ انتشار 2015